Hölder-type inequalities and their applications to concentration and correlation bounds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some extended Simpson-type inequalities and applications

‎In this paper‎, ‎we shall establish some extended Simpson-type inequalities‎ ‎for differentiable convex functions and differentiable concave functions‎ ‎which are connected with Hermite-Hadamard inequality‎. ‎Some error estimates‎ ‎for the midpoint‎, ‎trapezoidal and Simpson formula are also given‎.

متن کامل

Hölder and Minkowski type inequalities for pseudo-integral

There are proven generalizations of the Hölder's and Minkowski's inequalities for the pseudo-integral. There are considered two cases of the real semiring with pseudo-operations: one, when pseudo-operations are defined by monotone and continuous function g, the second semiring ([a, b], sup,), where is generated and the third semiring where both pseudo-operations are idempotent, i.e., È = sup an...

متن کامل

Moser-Trudinger And Adams Type Inequalities And Their Applications

MOSER-TRUDINGER AND ADAMS TYPE INEQUALITIES AND THEIRAPPLICATIONSbyNGUYEN LAMAugust 2014Advisor: Dr. Guozhen LuMajor: MathematicsDegree: Doctor of PhilosophyIn this dissertation, we study some variants of the Moser-Trudinger inequalities and Adamsinequalities. The proofs of these inequalities relied crucially on the symmetrization arguments inthe lite...

متن کامل

Reverse Hölder Inequalities and Approximation Spaces

We develop a simple geometry free context where one can formulate and prove general forms of Gehring's Lemma. We show how our result follows from a general inverse type reiteration theorem for approximation spaces. 2001 Academic Press

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2017

ISSN: 0019-3577

DOI: 10.1016/j.indag.2016.11.017